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Abstract

We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorpo-
rated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with Adaptive Mesh Refinement
(AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest.
The physics modules are time-advanced using operator splitting. On each level, separate ‘‘level-solve’’ packages advance
the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alter-
nates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient
continuation (Wtc). We analyze the magnitude of the Wtc parameter to ensure positivity of the resulting linear system,
diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement.
For diffusive processes such as MGD, the refined level uses Dirichlet boundary data at the coarse–fine interface and
the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve
(SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system
of G equations, where G is the number of groups. We adapt the ‘‘partial temperature’’ scheme for the SS; hence, we reuse
the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a
known analytic solution. We demonstrate utility of Wtc by running with increasingly larger timesteps. Lastly, we simulate
the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray
radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our
large Y simulation contradicts a long-standing theory and demonstrates the inadequacy of gray diffusion.
Published by Elsevier Inc.

Keywords: Multigroup radiation diffusion; Pseudo transient continuation; Radiation-hydrodynamic codes with AMR
0021-9991/$ - see front matter Published by Elsevier Inc.

doi:10.1016/j.jcp.2007.09.019

q This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore
National Laboratory under Contract No. W-7405-Eng-48.

* Corresponding authors. Tel.: +1 925 422 4213; fax: +1 925 423 9208.
E-mail addresses: shestakov@llnl.gov (A.I. Shestakov), soffner@berkely.edu (S.S.R. Offner).

mailto:shestakov@llnl.gov
mailto:soffner@berkely.edu 


A.I. Shestakov, S.S.R. Offner / Journal of Computational Physics 227 (2008) 2154–2186 2155
1. Introduction

This paper describes a numerical method to solve the radiation multigroup diffusion (MGD) equations.
Two themes are presented. One is the scheme itself. We add pseudo transient continuation (Wtc) to the famil-
iar ‘‘fully-implicit’’ method of Axelrod et al. [2]. The second theme is code-specific. Our MGD solver is embed-
ded in a multidimensional, massively parallel, Eulerian radiation-hydrodynamic code, which has patch-based,
time-and-space Adaptive Mesh Refinement (AMR) capability. Our code’s AMR framework stems from the
Berger and Oliger idea [3] developed for hyperbolic, compressible hydrodynamic schemes. The idea was
expanded by Almgren et al. [1] and applied to the type of elliptic solvers required for the incompressible equa-
tions of Navier–Stokes. Howell and Greenough [7] applied the Almgren et al. framework to the scalar, par-
abolic ‘‘gray’’ radiation diffusion equation, thereby creating the start of our radiation-hydrodynamic code.

The AMR framework works as follows. A domain, referred to as the ‘‘coarse’’ or L0 level, is discretized
using a uniform, coarse spatial mesh size hc.

1 After advancing with a timestep Dtc, the result is scanned for
possible improvement. One may refine subregions containing a chosen material, material interface(s), shocks,
etc. Whatever refinement criteria are used, after the subdomains are identified, specific routines define a col-
lection of ‘‘patches,’’ which cover the subdomains. In two dimensions, the patches are unions of rectangles; in
3D, they are unions of hexahedra. The patches need not be connected, but they must be contained within the
coarse level. The patches denote the ‘‘fine’’ or L1 level and are discretized with a uniform, spatial mesh size hf.
A typical refinement ratio hc/hf equals two, but higher multiples of two are also allowed.

Because the original framework was designed for temporally explicit hyperbolic schemes, Dtc is restricted by
a CFL condition. This implies a similar restriction for the L1 level timestep Dtf. For the case, hc/hf = 2, level
L1 time-advances twice using Dtf = Dtc/2. Boundary conditions for level L1 are supplied as follows. Wherever
level L1 extends to the physical boundary, the level uses the conditions prescribed by the problem. Portions of
level L1’s boundary which lie inside the physical domain have conditions prescribed by time and space inter-
polated data obtained from the L0 solution. For diffusion equations, these conditions are of Dirichlet type.
The numerical solution consists of both coarse and fine grid results. Unfortunately, as it stands, the composite
solution does not guarantee conservative fluxes across the level boundaries. To maintain conservation, a sep-
arate procedure, dubbed a sync-solve (SS) is required. The SS reduces to an elliptic unstructured grid solve on
the composite grid of L0 and L1 levels. The AMR procedure may be recursive. That is, a level L1 grid may
generate its own subdomain for refinement, i.e., a level L2. In that case, one SS couples results from levels L1
and L2. Once the levels advance to the L0 level time, a SS coupling all three levels ensues. For the multigroup
equations, the SS requires an unstructured grid solve for a coupled system of reaction-diffusion equations. Our
scheme for a multigroup SS is an important theme of this paper.

The MGD equations stem from a discretization of the multifrequency radiation diffusion equations. The
latter is an approximation to the equations of radiation transfer, obtained by assuming the matter to be opti-
cally thick, which suppresses the directional dependence of the radiation intensity. Details of the derivation
may be found in various sources: Mihalas and Weibel-Mihalas [11], Zel’dovich and Raizer [25], Pomraning
[16].

The gray radiation diffusion equation is a simplification of the MGD equations. It is essentially a one-group
equation and is derived by integrating over all frequencies. Surprisingly, it gives very good results in many
cases. However, it clearly cannot display frequency-dependent effects. When those are important, it gives
incorrect results. Unfortunately, unless one solves a problem with both gray and MGD, one never knows
when the former is adequate.

We now summarize the paper. Our MGD scheme consists of two parts. Sections 2 and 3 develop the level-
solve algorithm, which is applied on each level. Section 2 develops the equations, the discretization, and our
Wtc scheme. Section 3 proves three lemmas which determine the initial magnitude of the Wtc parameter r. Our
philosophy for r is as follows. The result of the level solve is the time-advanced radiation group energy den-
sity, which physics dictates to be non-negative. Zeroing anomalously negative values is not an option since
they are the correct conservative solution to the linear system that stems from the discretization of the system.
1 In multiple dimensions, coordinates have their own mesh spacing.
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Thus, the unphysical result nonetheless conserves energy. The difficulty is avoided if in the original formula-
tion of the linear system Ax = b, A is an M-matrix and the right-hand-side (RS) is non-negative. Since we solve
Ax = b using an iterative scheme, the magnitude of r is determined to ensure b P 0, a diagonally dominant A,
and that the iterations converge. To a large extent, we are guided by Pert [15], who discusses how and why the
solution to a discretization of an equation may be unacceptable from a physical standpoint. For a first read-
ing, Section 3 may be skipped; the analysis of the required magnitude of r is not needed for the subsequent
sections.

We note that Wtc is widely used to solve nonlinear systems of equations. It is closely related to the Inexact
Newton Backtracking Method by Shahid et al. [17]. When applying Wtc to a Newton solver, the basic idea is
to limit the change to the iterates when one is far from the root but not restrict the change as one approaches
the root. With Wtc, limiting is done by the magnitude of the pseudo-timestep. Kelley and Keyes [8] put Wtc on
a solid analytic framework by examining the three regimes of Wtc: small, medium, and large pseudo-timesteps.
In the last regime, Wtc recovers Newton’s second order of convergence.

Our Wtc implementation differs from the norm. Standard applications typically detect when a problem is
‘‘hard’’ and then reduce the timestep or some other parameter by an arbitrary amount. However, this method
will not work for us because our solver is embedded in a time-dependent multiphysics code with separate mod-
ules for compressible gasdynamics, heat conduction, and radiation transport. Our MGD solver is called
numerous times during the course of a simulation. (If running with AMR, it is called multiple times per phys-
ical time advance.) Although the physical Dt is controlled by various means, and depending on the problem
can vary many orders of magnitude, we require a MGD solver that works under all conditions. Our Wtc
approach is similar to the one of Shestakov et al. [19]. We set the initial magnitude of the Wtc parameter
to ensure that for the first step, our iteration scheme converges and that the result is physical. We note that
our usage of Wtc is nearly equivalent to having the MGD module time-advance not in a single (physical) step
Dt, but in smaller time increments until the desired time t0 + Dt is reached. Some colleagues refer to the process
as ‘‘sub-cycling’’ the radiation module. It is easy to show that the lemmas of Section 3 still apply for sub-
cycling.

Section 4 describes the second part of our solver, viz., the sync-solve. Section 5 contains results. Three prob-
lems are presented. The first, in Section 5.1, displays the accuracy of the method and its convergence proper-
ties: first order in time and second order in space. Section 5.2 demonstrates the utility afforded by Wtc. For
hard problems, it accelerates convergence; for very hard problems, Wtc is indispensable. Section 5.3 models
the explosive expansion of a hot metal sphere suspended in cold air. The simulation couples all of the code’s
physics modules. The problem is an ideal candidate for AMR since effects propagate a large distance away
from the source, yet in early times, resolution is needed only near the sphere. The problem also demonstrates
the necessity of multigroup diffusion. We find that if the sphere’s energy is very high, gray diffusion gives the
wrong answer. For a 1 MT energy source, our MGD simulation contradicts results of Brode [5], who used
gray diffusion. Section 6 contains concluding remarks.

There are three appendices. Appendix A gives a table of exact values for the test problem described in Sec-
tion 5.1. Appendix B discusses situations that may complicate attaining a diagonally dominant matrix when
discretizing the multigroup system. Appendix C presents a spatial convergence analysis of the multigroup sys-
tem when running in ‘‘production’’ mode, that is, with a dominant flux limiter and with AMR.

2. Level solve

Ignoring velocity terms and Compton scattering, the multifrequency radiation equations (CGS units) [11]
are:
otum ¼ r � Dmrum þ cqjmðBm � umÞ; ð1Þ

qote ¼ �cq
Z 1

0

dm jmðBm � umÞ; ð2Þ
In (1) and (2), um and e represent the spectral radiation energy density and matter specific energy, respectively.
The former is a function of position x, time t and frequency m, while e is a function of the mass density q and
material temperature T, quantities which themselves depend on x and t. Evolution of q is governed by
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hydrodynamics. Hence, in our context, q is a known function. Introducing the specific heat cv = oe/oT turns
(2) into an evolutionary equation for T; hence, the left-hand-side (LS) becomes qcvotT. The subscript m des-
ignates that the term varies with frequency. In (1) and (2), c denotes the speed of light, jm the absorption opac-
ity, and Bm the Planck function,
Bm ¼ ð8ph=c3Þm3=½expðhm=kT Þ � 1� ðerg s cm�3Þ;

where h and k are the Planck and Boltzmann constants, respectively. The diffusion coefficient Dm depends on
the total inverse mean free path vm = qjm + qjm,s, where jm and jm,s are the absorption and scattering opacities,
respectively. (The opacities are also functions of material composition, q and T.) In (1), the term �Dm$u de-
notes the spectral radiation energy flux. To limit energy streaming faster than c, a flux limiter is introduced,
e.g.,
Dm ¼ c=½3vm þ jrðumÞj=um�: ð3Þ

The multigroup equations are derived as follows. The frequency domain is discretized into G groups with
boundaries fmggG

g¼0 satisfying
0 6 m0 < m1 < � � � < mG <1:

The equations are integrated over groups. We define
ugðx; tÞ ¼
Z

g
um ¼

Z mg

mg�1

dm um:
Time derivatives are replaced by differences and the system is multiplied by the timestep Dt. Integration of the
transport and absorption terms requires defining group-averaged opacities. Linearizing the Planck function
about a known temperature T*, the absorption term is expressed as
Z

g
jmðBm � umÞ ¼ jg½Bg þ B0gðT � T �Þ � ug�;
where jg is the group-averaged absorption opacity, Bg ¼
R

g BmjT¼T � , and B0g ¼
R

gðoBm=oT ÞjT¼T � . In a semi-im-
plicit scheme, T* = T0, where T0 is the temperature at the start of the time cycle. For fully-implicit differencing,
we must iterate until T* converges to T. For the transport term, we define
Dt
Z

g
r � Dmru ¼ r � Dgrug;
where Dg depends on a group-averaged inverse mean free path vg. Note that Dt has been absorbed into Dg.
The above definitions yield the multigroup equations,
0 ¼ u0
g � ug þr � Dgrug þ Kgðu; T Þ; g ¼ 1; . . . ;G; ð4Þ

0 ¼ qcvðT 0 � T Þ �
XG

‘¼1

K‘ðu; T Þ; ð5Þ
where u0
g and T0 denote values at the start of the time-advance,
Kgðu; T Þ ¼ ag½Bg þ B0gðT � T �Þ � ug�;
ag ¼ Dtcqjg:
Eqs. (4) and (5) comprise a nonlinear system with the strongest nonlinearity due to the emission term B. To
a lesser extent, opacities also have a temperature dependence and for non-ideal gases, so does cv. However, for
ease of solution, we may choose to view (4) and (5) as a linear system in which case all coefficients are eval-
uated at the old temperature T0. For simulations in which matter and radiation are tightly coupled, i.e., where
we expect to have um = Bm, the solution to the semi-implicit difference equations is ug ¼ Bg þ B0gðT � T 0Þ, with
Bg and B0g evaluated at T = T0. For high frequencies, limm!1ðBm=B0mÞ � 1=m; hence, Bg � B0g for large g. Unfor-
tunately, if the temperature is decreasing, i.e., if (T � T0) < 0, the linearized emission term is negative for large
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g, leading to the unphysical result: ug < 0. On the other hand, if we are able to iterate on T* so that it converges
to T, then in tightly coupled simulations, we obtain the desired solution ug = Bg with Bg evaluated at the
advanced temperature.

In our code we provide both options, i.e., solving a linear system, or converging on the implicit source.2 In
either case, solving (4) and (5) on a large domain with many groups presents a formidable task. To facilitate
the task, we introduce pseudo transient continuation (Wtc) and replace the zeros on the LS of (4) and (5) with
the Wtc derivatives,
2 At
sðug � u�gÞ and qcvsðT � T �Þ;
where s P 0, the inverse of the pseudo-timestep, is the Wtc parameter whose magnitude is at our disposal.
The variables u�g and T* represent advances in pseudo-time; they always appear on the LS of (4) and (5). As

mentioned above, we provide the option of running in either semi-implicit (SI) or fully-implicit (FI) mode.
With SI, since Bg is linearized about T = T0, in the definition of the coupling term Kg, we substitute T0 for
T*. However for FI, Kg is defined as above; Bg is linearized about the pseudo-time temperature T*. The
two modes lead to subtle differences in the scheme, as shown below.

For the FI scheme, if the matter equation is solved for the temperature change, we obtain
d�1ðT � T �Þ ¼ qcvðT 0 � T �Þ �
XG

‘¼1

a‘ðB‘ � u‘Þ; ð6Þ
where
d�1 ¼ qcvrþ
XG

‘¼1

a‘B0‘ and r ¼: 1þ s: ð7Þ
The domain of relevance s P 0 corresponds to r P 1.
For the SI scheme, the temperature change is,
d�1ðT � T 0Þ ¼ qcvðr� 1ÞðT � � T 0Þ �
XG

‘¼1

a‘ðB‘ � u‘Þ: ð8Þ
The term d is defined as above, but Bg and B0g are evaluated at T = T0.
For the FI scheme, if (6) is substituted into the equation for ug, we obtain
�r � Dgrug þ ðrþ agÞug � fg

XG

‘¼1

a‘u‘ ¼ u0
g þ ðr� 1Þu�g þ agBg þ fg qcvðT 0 � T �Þ �

XG

‘¼1

a‘B‘

 !
; ð9Þ
where fg ¼
:

dagB0g. Eq. (7) implies fg < 1, for all g. For the SI scheme, the RS of (9) changes: qcv(T
0 � T*) is

replaced with qcv(r � 1)(T* � T0).
Eq. (9) corresponds to a linear system
Au ¼ w
of order (N · G), where N is the number of mesh cells and G the number of groups. The first term on the LS of
(9) consists of second order, central differences over space. We write this term as
�r � Dgrug ¼ þDd;gug �Do;gug:
The first part represents multiplication of the vector ug by a diagonal matrix; the second term denotes multi-
plication by the off-diagonal part. The coefficients of Dd and Do are non-negative.

On the LS of (9), the term �fg
PG

‘¼1a‘u‘ is referred to as the ‘‘re-emission source’’ [12], since it represents
radiation energy absorbed by matter and re-emitted. If we define the column vectors f and a with components
fg and ag, respectively, the re-emission term is expressed as the matrix–vector product
the time of this writing, opacities and cv were time-lagged.



A.I. Shestakov, S.S.R. Offner / Journal of Computational Physics 227 (2008) 2154–2186 2159
�ðfaTÞu; ð10Þ

where aT = transpose(a), and u is the column vector of unknowns. Since the re-emission term does not couple
cells, (10) corresponds to separate products: one per cell, with each product of order G.

These observations allow expressing the matrix as
A ¼ K�M1 �M2; ð11Þ

where K is diagonal, M1 contains the offdiagonal terms due to the (spatial) diffusion term, and M2 contains the
offdiagonal terms due to interfrequency coupling. The corresponding elements are
Kg ¼ Dd;g þ rþ ag � fgag;

ðM1uÞg ¼ Do;gug;

ðM2uÞg ¼ fg

XG

‘ 6¼g

a‘u‘:
The decomposition (11) leads to the iterative scheme proposed by Axelrod et al. [2], which improves a guess u(i)

by successively solving
ðK�M2Þuðiþ1=2Þ ¼ wþM1uðiÞ; ð12Þ
ðK�M1Þuðiþ1Þ ¼ wþM2uðiþ1=2Þ: ð13Þ
We solve (12) and (13) until u(i) converges. Convergence is gauged by evaluating the 1-norms of w and the
residual r ¼ w�Au; the latter defined as,
r ¼ w�Auðiþ1Þ ¼ M2ðuðiþ1Þ � uðiþ1=2ÞÞ:

The procedure is fast since multiplication by M2 is local to each cell, which is very convenient if the spatial
domain is decomposed on multiple processors.

We now review the derivation of the system Au ¼ w. First, we assume that Wtc is not used, i.e., that r = 1
in (7) and (9). For the SI scheme, the terms B‘ and B0‘ are evaluated at T = T0. For FI differencing, we require
two types of iterations. Eqs. (12) and (13) comprise the inner iteration. It is initialized with u(0) equal to u0.
Once the inner iteration has converged to sufficient accuracy, (6) yields the new temperature. The SI scheme
essentially ends after the inner iteration converges (see below). For FI differencing, after T is computed, the
outer iteration sets T* = T, recomputes B‘ and B0‘ at T = T* and returns to the inner iteration. The outer iter-
ation halts when T* converges.

If Wtc is invoked, more care is required because when r > 1, the system Au ¼ w is not a true discretization
of the multigroup equations. Despite this complication, Wtc brings robustness to the scheme. The Wtc param-
eter s plays the role of an inverse timestep in pseudo-time. In principle, we could set s to a large value and solve
a succession of linear systems. The solution of each system represents an advance in pseudo-time. We continue
advancing until we reach the pseudo-time steady-state. This is easily seen by letting u�g ¼ ug on the RS of (9)
and moving the term to the LS. However, making s large is not practical as it involves many pseudo-time
advances. Furthermore, the intermediate pseudo-time results are of no interest. Consequently, we adopt the
strategy of making s as small as possible. We discuss the strategy in Section 3.

Wtc may be used with either SI or FI differencing. In the former, once (12) and (13) are converged, (8) yields
the new temperature T. We then compute the 1-norm of the ‘‘nonlinear’’ residual of the linearized equation for
the matter energy,
rnl ¼ V qcvðT � T 0Þ �
XG

‘¼1

a‘½B‘ þ B0‘ðT � T 0Þ � u‘�
 !

; ð14Þ
where V is the cell volume. The residual is compared with the 1-norm of the matter ‘‘energy’’ VqcvT, and in
order to monitor stagnation, it is also compared with the energy change over the pseudo-timestep
Vqcv(T � T*). With FI, the temperature T, obtained from (6), is used to compute the emission B‘. The residual
rnl is defined as in (14), except without the B0‘ðT � T 0Þ term.
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Unfortunately, unless the iterations converge to round-off accuracy, energy may not be conserved. Lack of
conservation stems from values of user-set parameters that control stopping criteria for the iterations. For
example, it may be efficient to halt once irnli1 < 10�6, and the norm of the iterates i(DT)/Ti1 < 10�2 since
continuing brings little noticeable (visual) improvement to the solution. However, if one were to stop at that
point, energy may not be conserved to desired accuracy. To restore conservation, we provide the option of an
additional step. After the iterations stop, we assume that the last computed temperature T is ‘‘frozen’’ and use
it to compute emission. In the SI scheme, emission into the gth group is defined as Sg ¼ Bg þ B0gðT � T 0Þ,
where Bg and B0g are evaluated using T0. (To prevent unphysical behavior, Sg is not allowed to be negative.)
In the FI scheme, we evaluate Bg using T and set Sg = Bg. Having a known emission allows us to compute the
energy-conserving radiation field. The groups decouple. For g = 1, . . . ,G, we solve
3 If
monot
Ti+1/2

while t
opacit
that m
�r � Dgrug þ ð1þ agÞug ¼ u0
g þ agSg:
After computing ug, the matter energy density change is
DE ¼ �
XG

‘¼1

a‘ðBg � ugÞ;
where, if using the SI scheme, Bg is linearized about T = T0, or with FI, is evaluated at T. The quantity V DE
represents the average energy change of the matter. In cells with more than one material, we adapt a sugges-
tion of Zimmerman [27], which simulates intra-cell gray diffusion. The scheme assumes each material resides in
its own sub-volume. We solve for separate, frequency-averaged radiation energy densities and matter temper-
atures in the sub-volumes. The energy change of the materials depends on the individual, frequency-averaged
opacities as well as on DE.

We now briefly describe the spatial discretization. We largely follow procedures described by Howell and
Greenough [7] (H&G) and Shestakov et al. [19]. Our MGD solver is embedded in an Eulerian radiation-
hydrodynamic code with cell-centered fundamental variables: q,ug, etc. The code has distinct 1, 2, and 3D
executables; mesh cells are line intervals, rectangles, and rectangular hexahedra, respectively.

In 2 and 3D, we discretize the diffusion term $ Æ Dg$ ug using the H&G subroutines since those are readily
available. We note in passing that H&G use the Levermore-Pomraning flux limiter [9] instead of the simple
expression in (3). For 1D we have our own discretization; $ Æ Dg$ug is written as
½Diþ1=2ðuiþ1 � uiÞ=h� Di�1=2ðui � ui�1Þ=h�=h; ð15Þ
where the group index g is suppressed and where i is the cell index.
The face-centered diffusion coefficient Di+1/2 is computed as follows. First, we modify (3) by adding the

term b /h to the denominator, where b is a small, user-specified constant, e.g., 10�6. After factoring h, we
obtain
D ¼ ch=½3vhþ jDðuÞj=uþ b�;

where we suppress the group index and note that the expression is to be evaluated on a face. The denominator
is now dimensionless. The second term is the relative difference of u; we discuss its discretization momentarily.
The product vh is an optical depth. In this light, b provides a floor to the cell’s optical depth. The aim is to
avoid complications with the matrix solve in case v! 0 and at the same time, um is nearly spatially constant,
which may easily happen for high frequency groups. The face-centered opacity is an average of the adjoining
cell-centered opacities. We offer several options. For the simulations in this paper, we typically use inverse
averaging, but other options (arithmetric, square root) are also allowed.3 The term jD(u)j/u is written as
the two opacities are very different, inverse averaging: ji+1/2 „ 2jiji+1/(j i + ji+1)! 2 min(ji,ji+1). Assuming the opacity is
one with T, the result is nearly the same as what is commonly done in gray diffusion, viz., forming a face-centered temperature,
„ (Ti + Ti+1)/2, and calculating ji+1/2 directly with Ti+1/2. For example, if j = j0/Tn and Ti� Ti+1, inverse averaging gives 2j0=T n

i
he face-centered T result is 2nj0=T n

i . For the free-free gray opacity, n = 3.5; hence, the two results are similar. Of course, if the
y is not monotone with T, the face-centered technique is better. We plan to incorporate that option in the future. However, we note
ultigroup opacities are usually not strong functions of T.
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2juiþ1 � uij=ðuiþ1 þ uiÞ:

Other options are also available, e.g., instead of the arithmetic average, one may substitute max (ui+1,ui) in the
denominator. We plan to extend the above discretization to higher dimensions.

Cell-centered data, such as cv, are obtained as in [7].
For coupling to the radiation field in mixed-material cells, we need averaged material properties, e.g., opac-

ities. These are obtained by mass averaging. Suppressing the group index, if n is the material index and denot-
ing averaging with an overbar, the opacity (cm2/g) is given by m�j ¼

P
nmnjn, where mn is the mass of the nth

material. Equivalently,
�q�j ¼:
X

n

fnqnjn;
where fn „ Vn/V is the volume fraction.
This concludes the description of the algorithm used to advance the multigroup equations on an AMR

level. In the following section, we analyze the convergence of (12) and (13), and we focus on how the Wtc
parameter r ensures stable, robust iterations, to yield a physical, i.e., non-negative result.

3. Analysis of Wtc

In this section we develop three criteria that set the Wtc parameter. Disinterested readers can safely skip the
analysis and continue to Section 4 where we discuss the implementation of the multigroup scheme in the con-
text of AMR.

Recalling that r = 1 + s, we develop lemmas that set the initial magnitude of s, where by initial we mean the
following. A new value of s is determined at each time advance for each AMR level. The level advance consists
of nested loops. For the ‘‘inner’’ iterations, s is fixed. After convergence, s is reset to s! ass, where as is a
user-set input whose default value is 1/2. Section 5.2 describes an experiment with another setting of as.
Our strategy for the initial s is to ensure a non-negative w, diagonal dominance, and a convergent inner iter-
ation. For the derivation, it is convenient to define
B ¼:
XG

‘¼1

a‘B‘; B0 ¼:
XG

‘¼1

a‘B0‘; ð16Þ

C0g ¼
: agB0g=qcv; C ¼: B=qcv; C0 ¼: B0=qcv: ð17Þ
3.1. Positivity of w

Before analyzing the effect of Wtc, we examine the scheme’s behavior without it. If r = 1, the term u�g dis-
appears from (9). In the following discussion, we ignore the T0 � T* term since for the SI scheme, or for the
first FI inner iteration, T* = T0. Since u0

g � Bg, if either Dt is large or the coupling is strong, agBg � u0
g. Hence,

in this case, the RS of the system, w 	 agBg � fgB, where B is defined in (16). If r = 1,
fg ¼ agB0g=ðqcv þ B0Þ ¼ C0g=ð1þ C0Þ. Hence,
w 	 agðBg þ BgC
0 � B0gCÞ=ð1þ C0Þ:
Since C and C0 are proportional to Dt times the opacity, the sole Bg term in the numerator is swamped by the
other two terms when Dt is large or the matter is optically thick. In this limit, the sign of w equals the sign of
ðBgC

0 � B0gCÞ, which may be negative.
However, with Wtc, non-negativity of w is equivalent to the inequality
0 6 pðrÞ ¼ u�gr
2 þ 2~brþ ~c;
where
2~b ¼ u0
g � u�g þ agBg þ C0u�g;

~c ¼ C0ðu0
g � u�g þ agBgÞ þ agB0g½T 0 � T � � C�;
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for the fully-implicit (FI) scheme. The SI scheme, adds the term agB0gðT � � T 0Þ to the definition of 2~b. If r = 1,
we recover the non-Wtc scheme, which as shown, may have indeterminate sign(w). At the end of the section we
show that the SI scheme is less robust. We first analyze the FI scheme.

For large r, p is positive—even if u�g ¼ 0. The derivative dp/dr increases monotonically and is
positive for r = 1. If u�j ¼ 0, p increases linearly with r and has slope u0

g þ agBg > 0. Hence, we have
proved:

Lemma 1. If pjr=1 P 0, the RS of (9) is non-negative for all r P 1. Otherwise,

(1) If u�j > 0, the RS of (9) is non-negative if
4 In
r P rmin ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � u�g~c

q
� ~b

� �
=u�g

� �
:

(2) If u�j ¼ 0, the RS of (9) is non-negative if r P rmin ¼ �maxð~c=2~bÞ.

The lemma’s limit is very restrictive for large Dt, as we now show. As Dt!1, the terms ag, C and C0 dom-
inate the definitions of ~b and ~c. Hence,
lim
Dt!1

2~b ¼ agBg þ C0u�g;

lim
Dt!1

~c ¼ agBgC
0 � agB0gC:
Substituting into the expression for the root and factoring out agu�g yields
lim
Dt!1

rmin ¼ max
ag

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2 þ 4c

q
� ðaþ bÞ

� �
;

where a ¼ Bg=u�g, b ¼
P

‘j‘;gB0‘=qcv, c ¼ ðB0g=u�gÞ
P

‘j‘;gB0‘=qcv and j‘,g = j‘/jg. The term ag = cDtqjg equals
‘c/‘g, where ‘c is the maximum distance a photon can travel in time Dt and ‘g is the absorption mean free
path for the gth group. We now show the remaining expression is of order one. If the radiation field is at
equilibrium, a = 1. The term B0‘ is of order B‘/T. If it is exactly equal to B‘/T, the expression multiplying
ag/2 vanishes.

If u�g ¼ u0
g ¼ 0 and pjr=1 < 0, then for large Dt, rmin ! ðB0gC � BgC

0Þ=Bg, which equals cDt times a term of
order one.

We now consider the SI scheme. As noted above, SI adds the expression agB0gðT � � T 0Þ to the definition of
2~b. Effectively, the extra term means that rather than having 2~b depend on the emission source Bg (which is
evaluated at T*), the coefficient depends on the linearization Bg þ B0gðT � � T 0Þ, with Bg and B0g evaluated at T0.
If the temperature is decreasing the expression may be negative. As a consequence, we are not assured that dp/
dr is positive. If u�g is non-zero, we can find a suitable r. However, if u�g ¼ 0, p(r) is a linear function with pos-
sibly a negative derivative. If that case arises as we query the cells, we set r = 1 for the cell in question. Because
of these uncertainties, by default, we run with the FI scheme.
3.2. Diagonal dominance

To prove diagonal dominance, we compute row sums. The diffusion terms sum to zero, since the matrix
composed of just these terms must annihilate the vector (1,1, . . .).4 Thus, for diagonal dominance,
rþ ag � fg

XG

‘¼1

a‘ > d P 0:
Recalling the definition of fg, the relation is equivalent to
0 6 qðrÞ ¼ r2 þ 2~brþ ~c;
extreme cases, because of finite precision, the diffusion terms may swamp the other terms. We discuss the possibility in Appendix B.
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where
2~b ¼ ag þ C0 � d;

~c ¼ agC
0 � C0g

XG

‘¼1

a‘ � C0d;
and C0, C0g are defined in (17). As before, r P 1 is the domain of interest. The quadratic q(r) is nonnegative for
sufficiently large r. However,
qjr¼1 ¼ ð1þ C0Þð1þ ag � dÞ � C0g
XG

‘¼1

a‘:
The ag and C0 terms are proportional to Dt. Hence, as Dt!1, the sign of the expression is dominated by
sign ðC0 � C0g

PG
‘¼1a‘Þ. Since the expression varies as

PG
‘¼1a‘ðB0‘ � B0gÞ, the sign is indeterminate. However,

(dq/dr)jr=1 is positive for d < 2. We have proved:

Lemma 2. If qjr=1 P 0 and d > 0, A is strictly diagonally dominant for all r P 1. Otherwise, A is strictly
diagonally dominant if
r P rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � ~c

p
� ~b:
Remark 1. For large Dt,
lim
Dt!1

rmin ¼ max
ag

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� bÞ2 þ 4d

q
� ð1þ bÞ

� �
;

where d ¼ ðB0g=qcvÞ
P

‘j‘;g and, as before, b ¼
P

‘j‘;gB0‘=qcv, and j‘,g = j‘/jg. As in Lemma 1, when Dt is large,
rmin = ‘c/‘g times a term which should be of order one.
3.3. Two-step iterative scheme

We have shown that for sufficiently large r, A is an M-matrix. Hence, (K �M1) �M2 and (K �M2) �M1

are regular splittings, and each half of the two-step scheme (12) and (13) is a convergent iteration [24, Theorem
3.13, p. 89]. Here we analyze how the scheme reduces the error. Of particular interest is that for large Dt, the
scheme (12) and (13) may not converge unless the Wtc parameter r is sufficiently large.

It is convenient to change variables,
vj ¼
:

ajuj:
The system of interest is then A0v ¼ w, where
A0 ¼ K�M1 �M2
and K is diagonal,
Kg ¼ ðDd;g=agÞ � fg þ 1þ r=ag;

ðM1vÞg ¼ Do;gvg=ag;

ðM2vÞg ¼ fg

XG

‘ 6¼g

v‘:
If e(i) = v � v(i) defines the error for (12) and (13), the error satisfies
ðK�M1Þeðiþ1=2Þ ¼ M2eðiÞ;

ðK�M2Þeðiþ1Þ ¼ M1eðiþ1=2Þ:
ð18Þ
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We express the error as a product of spatial and frequency components. For a 2D spatial domain,
5 Sin
6 Th
eðiÞk;m;g ¼ �ðiÞg e
ffiffiffiffi
�1
p

ðkhkþmhmÞ; ð19Þ
where the indices k and m refer to distinct spatial axes. We now analyze the iteration error
eðiþ1Þ ¼ ðK�M2Þ�1M1ðK�M1Þ�1M2eðiÞ:
Consider the unit vector ê‘ consisting of N components, with unity in the ‘th position and zeros for the rest.
Since the initial error e(i) is a linear combination of such vectors, it suffices to analyze the case when the fre-
quency component of e(i) equals ê‘. We will prove that for a properly chosen r P 1,
jjeðiþ1Þjj1 6 f < 1:
In other words, if r is sufficiently large, one iteration of the two-step scheme reduces the error, which we will
show occurs for f 0 < f, r(f 0) > r(f). However, larger r denote a smaller Wtc time step, resulting in a longer
pseudo-time to reach the desired steady-state.

Assuming that the diffusion coefficient does not vary in space5 and that we use a uniform 2D spatial mesh
with mesh size h, the error after the first half step is
�ðiþ1=2Þ
g ¼ fg=½1� fg þ ðr=agÞ þ 2ggð2� cos hk � cos hmÞ�; ð20Þ
where
gg ¼ Dg=agh2 ¼ lg;Dlg;a=3h2;
lg,a = 1/qjg is the absorption mean free path, and lg,D is the diffusion mean free path; the latter is the sum of
the absorption and scattering opacities. In (20), the expression multiplying gg is non-negative.6 Since fg < 1,
�ðiþ1=2Þ

g is non-negative. Assuming the worst case h = 0 yields,
0 < �ðiþ1=2Þ
g 6 fg=ð1� fg þ r=agÞ; ð21Þ
a result which also holds in 1 and 3 dimensions. The bound is sharp; i.e., �(i+1/2) equals the bound if the original
error e(i) has no spatially varying component.

Since (19) holds for i, i + 1/2, and i + 1, we now analyze the second half step. In two dimensions,
M1eðiþ1=2Þ ¼ ðcos hk þ cos hmÞ2ggeðiþ1=2Þ:
In n = 1, 2 or 3 dimensions, the parenthetical expression contains 1, 2 or 3 cosine terms. If we again assume
h = 0, the expression is bounded by n.

To determine e(i+1) from (18) we invert (K �M2) using the Sherman-Morrison formula by noting that
K�M2 ¼ K0 � feT;
where e is the vector consisting of all ones, the components of f are the previously defined fg, and K 0 is diagonal
with
K0g ¼ g0g þ 1þ r=ag; g0g ¼
:

2ngg: ð22Þ
In (22), we generalized by allowing for n = 1, 2, or 3 spatial dimensions. After some algebra, we obtain
j�ðiþ1Þ
g j 6 1

K0g
g0g�
ðiþ1=2Þ
g þ fg

1� eTðK0Þ�1
f

 !XG

‘¼1

g0‘�
ðiþ1=2Þ
‘

K0‘

" #
;

where
1� eTðK0Þ�1
f ¼ 1�

XG

‘¼1

f‘=K
0
‘: ð23Þ
ce, as we show, the worst error arises for spatially constant error, we are free to ignore the diffusion flux limiter in the analysis.
e corresponding expression in 1 and 3 spatial dimensions is also non-negative and bounded by 1.0 and 3.0, respectively.
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Summing yields the 1-norm,
jj�ðiþ1Þjj1 6 1� eTðK0Þ�1
f

h i�1XG

‘¼1

g0‘�
ðiþ1=2Þ
‘

K0‘
:

Our task is done if we can show that the RS is bounded by f. Using (23) this entails showing that
XG

‘¼1

g0‘�
ðiþ1=2Þ
‘

K0‘
6 f 1�

XG

‘¼1

f‘
K0‘

 !
:

After substituting the bound (21) and simplifying, the inequality becomes
XG

g¼1

C0g
K0g

 !
g0g

1� fg þ r=ag

� �
6 f rþ

XG

g¼1

C0g
K0g

 !
ðK0g � 1Þ

" #
: ð24Þ
To summarize, if (24) is satisfied the two-step scheme (12) and (13) converges and each iteration reduces the
error by a factor f.

We now show that if Wtc is not used, i.e., if r = 1, and Dt is large, the scheme may not converge. If r = 1,
since ag � Dt, limDt!1K0g ¼ g0g þ 1 and limDt!1fg = pg, where pg > 0 and

P
gpg ¼ 1. Also, if r = 1, since

C0g / Dt, for large Dt, the lone r on the RS of (24) is swamped by the sum. Dividing both sides of (24) by
cDt, the LS becomes
XG

g¼1

qjgB0gg
0
g

qcvð1þ g0gÞ

 !
ð1� pgÞ

�1
:

On the other hand, if f = 1, the RS tends to the same sum, but without the term (1 � pg)�1. This makes the LS
larger than the RS, giving the desired contradiction. We have proved:

Lemma 3. If r = 1 and Dt is large, (12) and (13) may not converge.

We now estimate how large to make r in order to satisfy (24). The terms ag and C0g are proportional to Dt;
also, r P 1 and K0g > 1. Hence, (24) holds for small Dt. To obtain a tractable expression, we derive a relation
that stems from a more stringent inequality. Eq. (24) holds if we derive a r that satisfies a relation insensitive to
the lone r on the RS and is obtained by requiring that the individual terms in the sum satisfy the inequality.
This allows canceling the common term C0g=K

0
g. Hence, we seek r satisfying
g0g=ð1� fg þ r=agÞ 6 fðK0g � 1Þ:
Recalling that fg ¼ C0g=ðrþ C0Þ and using (22) leads to
0 6 sðrÞ ¼: r3 þ asr
2 þ bsrþ cs;
where
as ¼ agð1þ g0gÞ þ C0;

bs ¼ ag½ð1þ g0gÞC
0 � C0g þ agg

0
gð1� f�1Þ�;

cs ¼ a2
gg
0
g½ð1� f�1ÞC0 � C0g�:
As before, r P 1 is the domain of interest.
To simplify the analysis, we assume f = 1, i.e., we seek a r that guarantees marginal convergence. To this

end, we define
~bs ¼ ag½ð1þ g0gÞC
0 � C0g�;

~cs ¼ �a2
gg
0
gC0g:
Consider the cubic
sðrÞ ¼ r3 þ asr
2 þ ~bsrþ ~cs:
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For r P 1, all derivatives of s are positive. If
sð1Þ ¼ 1þ as þ ~bs þ ~cs P 0;
then the scheme (12) and (13) converges. However, if s(1) < 0, we need a r > 1 that renders s P 0. To avoid
computing cubic roots, we approximate s by a quadratic w(r),
wðrÞ ¼ ð3þ asÞr2 þ ð~bs � 3Þrþ ~cs þ 1;
and determine the root of w. The polynomials w and s and their first two derivatives agree at r = 1. The dif-
ference s(r) � w(r) = (r � 1)3, i.e., w(r) < s(r) for r > 1. Hence, the positive root of w(r) overestimates the r
needed for marginal stability. We have proved:

Lemma 4. If wjr=1 P 0, the scheme (12) and (13) converges. If wjr=1 < 0, the scheme converges if
1þ s ¼ r P rmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~bs � 3Þ2 � 4ð3þ asÞð~cs þ 1Þ

q
þ 3� ~bs

6þ 2as
:

4. Multigroup AMR scheme

In this section, we describe our implementation of AMR for the multigroup diffusion (MGD) system. The
scheme necessarily adheres to the code’s general architecture. That is, on each grid level each physics module
(hydrodynamics, radiation) is called in order. These comprise the level solves. If AMR is used, the code refines
in both space and time, as described by Howell and Greenough [7]. After a refined level is time-advanced to the
next coarse level time, a synchronization is required in order to maintain conservation. For a scalar diffusion
equation and only two levels, coarse and fine, the ‘‘sync-solve’’ is difficult enough since it reduces to effectively
an unstructured grid solve over the combined coarse and fine grids. For MGD, the difficulty is compounded
by having to sync-solve a coupled system of diffusion equations.

We begin by recalling the equations,
otug ¼ r � Dgrug þ jgðBg � ugÞ; g ¼ 1; . . . ;G; ð25Þ

cvotT ¼ �
XG

g¼1

jgðBg � ugÞ; ð26Þ
where cv is now the heat capacity, while Dg and jg are the diffusion and coupling coefficients. For ease of expo-
sition, it is convenient to consider the one-dimensional case. The level solve module computes the solution to
ug;i � u0
g;i ¼ ðF g;iþ1=2 � F g;i�1=2Þ=hi þ cg;i½BgðT iÞ � ug;i�; ð27Þ

cv;iðT i � T 0
i Þ ¼ �

XG

g¼1

cg;i½BgðT iÞ � ug;i�; ð28Þ
where i is the cell index, cg,i = Dtjg,i, and Fg,i+1/2 is the fluence on the right edge of the ith cell,
F g;iþ1=2 ¼ DtDg;iþ1=2ðug;iþ1 � ug;iÞ=hi:
For simplicity, assume there are only two levels, coarse and fine. Since (25) and (26) are reaction-diffusion
equations, advanced with backward Euler temporal differencing, the discretization is unconditionally stable.
Hence, in the following, in order to simplify the derivation, we assume that both levels are advanced with the
same timestep. However, in the code we also time-cycle. If i = 1, . . . ,N define the indices of all coarse-level
cells, let j = 1, . . . ,J define the indices of the refined cells and i = I, . . . ,N define the indices of those coarse cells
which are not refined. Coarse cells indexed with i = 1, . . . , I � 1 are defined as the ‘‘covered’’ cells. We first
update the entire coarse level, then the fine level. Both levels require boundary conditions (BC). The coarse
level uses the user-specified BC. In the following example, the refined domain abuts the left side boundary
and consists of J cells. Hence, the fine level uses the same BC on the left edge. The fine cell indexed with
j = J lies in the interior of the domain. We reuse the Howell and Greenough [7] infrastructure to provide a
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Dirichlet condition for the cell. The datum is obtained by interpolating coarse grid data. Let kj and hi define
the mesh widths of the fine and coarse cells, respectively. After multiplying by the mesh widths and summing
over all cells and groups, we obtain
XJ

j¼1

kj cv;jðT j � T 0
j Þ þ

XG

g¼1

ðug;j � u0
g;jÞ

" #
þ
XN

i¼I

hi cv;iðT i � T 0
i Þ þ

XG

g¼1

ðug;i � u0
g;iÞ

" #

¼
XG

g¼1

ðF g;Nþ1=2 � F g;1=2 � dF g;cf Þ; ð29Þ
where the last term is the fluence mis-match of the gth group at the coarse–fine interface,
dF g;cf ¼ F g;Jþ1=2 � F g;I�1=2:
The AMR scheme assumes that the system is linear. Hence, the emission is expressed as
BgðT iÞ ¼ B
g;i þ �B
g;iðT i � T 
i Þ;
where B
g;i and its derivative with respect to T, i.e., �B
g;i, are evaluated at a temperature T 
i , e.g., B
g;i ¼ BgðT 
i Þ.
For semi-implicit Euler differencing, T 
i ¼ T 0

i ; if fully-implicit, T 
i ¼ T i. Either way, because dFg,cf need not be
zero, (29) shows that energy may not be conserved after the two level advances. To restore conservation, we
introduce the system for the corrections
u0g;i ¼ ðF 0g;iþ1=2 � F 0g;i�1=2Þ=hi þ cg;i½�B
g;iT 0i � u0g;i� þ dF g;cf=hi; ð30Þ

cv;iT 0i ¼ �
XG

g¼1

cg;i½�B
g;iT 0i � u0g;i�; ð31Þ
where F 0g;i�1=2 denote the implicit fluxes; they are functions of u0g.

Eq. (30) holds for all groups g = 1, . . . ,G. In (30) and (31), the mesh index i varies over the coarse cells not
marked for refinement (i = I, . . . ,N) as well as the fine cells (j = 1, . . . ,J). Following the methodology of [7], we
put the fluence mis-match dFg,cf into the coarse cell(s) abutting the interface of the coarse and fine domains.

Summing the level advance and correction solutions yields conservation. If u�g;i ¼ ug;i þ u0g;i and
T �i ¼ T i þ T 0i, combining (30) and (31) with (27) and (28), multiplying by the mesh widths, and summing over
cells and groups, yields the desired conservation relation,
XJ

j¼1

kj cv;jðT �j � T 0
j Þ þ

XG

g¼1

ðu�g;j � u0
g;jÞ

" #
þ
XN

i¼I

hi cv;iðT �i � T 0
i Þ þ

XG

g¼1

ðu�g;i � u0
g;iÞ

" #
¼
XG

g¼1

ðF �g;Nþ1=2 � F �g;1=2Þ:
Eqs. (30) and (31) present a formidable task as it requires solving a simultaneous system of equations for
ðGþ 1ÞN unknowns, where N denotes the number of refined cells plus the number of coarse cells not marked
for refinement. The grid is effectively unstructured since it combines coarse and fine discretizations of the
domain. We attack the problem by applying a variant of the ‘‘Partial Temperature’’ scheme [10,18]. In this
scheme, groups are assigned a random order. As we cycle through the groups, each group computes a correc-
tion u0g and a partial temperature Tg. Note the group index g for the temperature. Although the scheme decou-
ples the groups from each other, the partial temperature Tg changes as we cycle through the groups. To be
precise, for each group, we solve the system
u0g;i ¼ ðF 0g;iþ1=2 � F 0g;i�1=2Þ=hi þ cg;i½�B
g;iT g;i � u0g;i� þ dF g;cf =hi; ð32Þ
cv;iðT g;i � T g�1;iÞ ¼ �cg;i½�B
g;iT g;i � u0g;i�; ð33Þ
where, as above, the mesh index i ranges over all refined cells and all coarse cells not covered by the fine grid.
For the group index g1 that we first pick, Tg�1,i = 0 on the LS of (33). Solving (32) and (33) for g = g1 yields
the first partial temperature T g1

. This temperature replaces Tg�1,i on the LS of (33) for the second randomly
picked group g2. After cycling through the groups, the last one, gG, gives the desired corrected temperature,
i.e., T 0i ¼ T 0gG;i

.
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If (33) is summed over all g, the LS telescopes and we obtain,
cv;iT 0i ¼ �
XG

g¼1

cg;i½�B
g;iT g;i � u0g;i�:
Because we have Tg,i on the RS instead of T0i, this is not exactly (31). However, if Tg,i does not vary too much
as we cycle through the groups, the result is no worse than one obtained with the (commonly-used) partial
temperature (PT) scheme since we apply PT to only corrections of the level-solve solution. Cycling through
the groups in random order avoids biasing the deviation since the coupling in (32) and (33) may lower T

for one group while raising it for another. In any case, the combined solution ðu�g; T �Þ is still conservative.
Eqs. (32) and (33) are solved using a Schur complement. Since (33) does not involve spatial derivatives, we

can easily solve for Tg,i. After substituting the result into (32), we obtain a single scalar equation for u0g;i, albeit
now, on the unstructured grid composed of coarse and fine cells, viz.,
u0g;i ¼ ðF 0g;iþ1=2 � F 0g;i�1=2Þ=hi þ cg;igg;i½�B
g;iT g�1;i � u0g;i� þ dF g;cf=hi;
where, gg;i ¼ cv;i=ðcv;i þ cg;i
�B
g;iÞ. After solving for u0g;i, Eq. (32) yields Tg,i. The fluence mis-match dFg,cf acts as a

source to the corrections. For groups with long mean free paths (mfp) and weak coupling, dFg,cf diffuses over
the mesh. For groups with short mfp and strong coupling, dFg,cf is spread locally over the group energy u0g;i
and ‘‘absorbed’’ into the matter.

Before closing this section, we note an inconsistency in the above multilevel scheme, indeed in any scheme
embedded in a multiphysics code like ours, which advances several modules (hydrodynamics, heat conduction,
radiation) using operator splitting. With splitting, on each level, the modules are advanced in order. For sim-
ulations using hydrodynamics and radiation diffusion and running with coarse L0 and fine L1 levels, the order
of operations is as follows. Level L0 first advances hydrodynamics, then radiation. Next, if refining by a factor
of two, L1 advances in the order: hydrodynamics, radiation, hydrodynamics, radiation. The multilevel solve
advances in the same order: hydrodynamics, then radiation. This implies that the radiation multilevel solve
uses coefficients, e.g., q, that are not the same as those used by the radiation level solve modules. In principle,
one cannot simply add the correction equations to the level solve equations and claim that the sum satisfies a
consistent set of equations. Nonetheless, the solution remains conservative.

5. Simulations

This section presents results using the multigroup scheme. We consider three problems. In Section 5.1, we
present a test problem with a known analytic solution. We compare numerical results with tabular data, pre-
viously published by Shestakov and Bolstad [21]. Using Richardson extrapolation, we show that our Wtc
scheme, i.e., what we apply on a level, is second (first) order correct in space (time). When running with
AMR, the temporal accuracy is first order. Accuracy of the spatial order depends on the norm used to mea-
sure convergence. In the most stringent1-norm, the order degrades to first, or worse, as shown at the end of
Section 5.1. Section 5.2 develops a variation of the Section 5.1 test problem in order to demonstrate the ben-
efits brought by Wtc. We do this by running with and without Wtc. We make several runs, each for only one
timestep. Runs are made with successively larger Dt. Because of fully-implicit differencing, as Dt!1, the
numerical solution should approach the time-independent, steady-state. The problem in Section 5.3 brings
everything together. We simulate the explosive expansion of a metal sphere suspended in air. The expansion
is due to sourcing a large amount of energy in a short time into the sphere. Simulations are done with the
code’s full functionality, i.e., we couple all of the physics modules and also use AMR.

5.1. Linear MGD test problem

In this section we present results for a MGD problem with a known solution. Due to the nonlinearity of the
equations, there are no test problems with analytic solutions. Thus, to validate and verify our algorithm, we
consider the linearized multigroup equations developed by Shestakov and Bolstad (S&B) [21] and compare
with tabular data.
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The S&B tables present results for a 64-group discretization of the linearized, non-dimensional, multifre-
quency diffusion equations derived by Hald and Shestakov (H&S) [6]. In the following, we briefly derive
the non-dimensional system, describe the test problem, explain how to set up the problem in a radiation-
hydrodynamic code, demonstrate the problem’s relevance to typical applications of multigroup diffusion,
compare results with an improved-accuracy table [4] (supplied in Appendix A), and conclude by proving that
our multigroup scheme’s convergence is first order in time and second order in space.

The nonlinear multifrequency H&S system is derived by assuming slab symmetry, constant density, an ideal
gas EOS, and an opacity characteristic of free-free transitions. One advantage of the H&S system is its non-
dimensional form, which enables comparing results from codes using different dimensional units. The equa-
tions are obtained by choosing characteristic values for density q0, temperature T0, and inverse mean free path
(mfp) j = j0/m3 with j0 = const and m the frequency variable. Radiation emission is given by a Wien distribu-
tion,7 i.e., BW = B0m

3exp(�hm/ kT), where B0 „ 8ph/c3 is the same constant defining the Planck function. The
inverse mfp appears in both the diffusion, D = c/3j, and the radiation-matter coupling terms, cj. (The diffu-
sion is not flux limited.) The normalization proceeds as follows. The values q0, j0, and T0 define the other nor-
malization constants,
7 It i
includi
that w

8 If i
would
m0 ¼: kT 0=h; ‘0 ¼: m3
0=j0; x0 ¼: ‘0=

ffiffiffi
3
p

;

t0 ¼
:
‘0=c; u0 ¼

:
B0m3

0; E0 ¼
:

u0m0:
By defining non-dimensional variables, x 0 = x/x0, t 0 = t/t0, u 0 = u/u0, m 0 = m/m0, etc., (and dropping the
primes) we obtain the normalized system,8
otu ¼ r � m3ruþ ðm3e�m=T � uÞ=m3; ð34Þ

RotT ¼ �T þ
Z 1

0

ðu=m3Þdm; ð35Þ
where the constant
R ¼ ðh=kÞðq0cv=u0Þ

and cv is the specific heat. Henceforth, unless stated otherwise, we use non-dimensional variables.

The H&S system yields a precise definition of the multigroup equations since the group integrals can be
computed exactly, an impossible task for definite integrals of the Planck function. Given a group structure
fmggG

g¼0, after integrating over groups,
otug ¼ �m3
goxxug þ pgT � ug=�m

3
g; g ¼ 1; . . . ;G; ð36Þ

RotT ¼ �T þ
XG

g¼1

ug=�m
3
g ð37Þ
where ug ¼
R

g udm and �mg is a group’s representative frequency. S&B define �mg as
ffiffiffiffiffiffiffiffiffiffiffiffi
mgmg�1
p

and �m1 as m1/2 since
the lowest group boundary is zero. The emission coefficients are
pg ¼
:

expð�mg�1=T Þ � expð�mg=T Þ: ð38Þ
If the group structure is broad enough,
P

gpg ¼ 1.
Eqs. (36) and (37) are nonlinear because of the product pgT. To derive an analytic solution, S&B follow the

approach of Su and Olson [22,23], which requires a linear system since it uses Fourier and Laplace transforms.
S&B linearize by defining a fixed temperature Tf and substituting Tf for T in (38).

Except for one item, it is easy to assemble the S&B linearized MGD system in a conventional radiation-
hydrodynamic code. Such codes usually allow an ideal gas EOS and a desired analytic form for the opacity.
s noteworthy that H&S’s choice of opacity and Wien spectrum for B gives the same emission source jBW as would be obtained by
ng stimulated emission (SE) effects [25] and using the Planck function, since SE multiplies j by the factor (1 � e�hm/ kT). Also note
ithout SE, the resulting Planck-averaged gray opacity does not exist; the integral diverges.
nstead of BW, H&S had used the Planck function, the factor e�m/T in Eq. (34) would be replaced by (em/T � 1)�1. However, H&S
then be unable to form Eq. (35), since the integral over all m (the total emission) diverges—see prior footnote.
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One chooses arbitrary values for q0, j0, T0, and picks a specific heat cv to set R. In our simulations, q0 =
1.8212111 · 10�5 g cm�3, T0 = 0.1 keV, and j0 = 4.0628337 · 1043 cm�1 s�3. To comply with S&B, we chose
cv to obtain R = 1. Our q0, T0, and j0 choices were dictated purely by reasons of convenience. Since we com-
pare with a non-dimensional result, other constants may be used instead.

The subtle item is how to force a code’s spectral emission rate to equal pg(Tf)T. We accomplish the task as
follows. The gth group’s emission is ag½Bg þ B0gðT � T �Þ�, where ag = Dtcqjg and jg is the group-averaged
opacity. The terms Bg and B0g are integrals over the gth group, at temperature T*, of the Planck function
and its derivative w.r.t. T. The integrals are computed by a FORTRAN subroutine, which takes T* as an input
variable. For the test problem, we use a different subroutine, which when called, first defines
9 A m
10 Fo
11 Wh

the rel
errors
B0g ¼ ð�mgm0Þ3ð8pk=c3Þ½expð�yg�1Þ � expð�ygÞ�;
where yg = hmgm0/ kTfT0. After computing B0g, the routine sets Bg ¼ B0gT �. In the yg definition, mg and Tf are
non-dimensional, while m0 and T0 are the normalization constants. The ð�mgm0Þ3 term cancels the 1/m3 depen-
dence of the opacity.

For the test, we consider S&B’s problem 1. The non-dimensional domain is 0 < x < X, where we set X = 4.
The initial condition is T = 1 (0) for x < (>) 0.5 and u = 0 everywhere. We use symmetry boundary conditions
at x = 0 and homogeneous Milne at x = X, i.e., ug + (2‘g/3)oxug = 0, where ‘g is the mean free path. We use
the same group structure as S&B: 64 groups, starting at zero, with widths increasing geometrically by the fac-
tor 1.1. We set m1 = 5 · 10�4 as the width of the first group.9 The test simulates an initially hot slab of material
encased by cold matter. Since u is initially zero throughout, the solution evolves by first coupling in the hot
subdomain. As radiation diffuses out, it couples to cold matter thereby heating it. Because of the opacity’s
1/m3 dependence, the group’s diffusion and coupling rates differ.

Although the problem appears contrived, it represents effects of radiation diffusion. We prove the assertion
in Fig. 1 where we display the temperature T and the total radiation energy density Er ð¼

P
gugÞ for two sim-

ulations ending at t = 1. Solid lines pertain to the linearized system, where Tf = 1.0. Dashed lines are solutions
of the ‘‘physical’’ nonlinear MGD system using Planckian emission. The similarity of the solutions validates
the relevance of the test problem. We used Tf = 1.0 (instead of S&B’s Tf = 0.1) because over the short duration
of the simulation, the emission temperature in the hot subdomain is of order 1.0 rather than 0.1.

We now present our MGD result using S&B’s parameter Tf = 0.1. Table 1 displays the relative errors of T

and Er for various x, at t = 1.0. For a variable f, we define the error e(f) = j(fx � fk)/fxj, where fk are our
numerical results and fx are the S&B table values, listed in Appendix A.10 Table 1 shows that we obtain better
than 0.5% accuracy over the domain 0 6 x 6 1. The worst error 0.48% occurs for T at x = 0.51. At that point,
according to the table in Appendix A, T undergoes more than a 20-fold drop from its value at x = 0.49. We
focus attention at the domain near x = 0.5 since that is where the variables undergo the sharpest change. At
these points, we obtain better than 0.1% errors, except for T at x = 0.52 and 0.53. Errors near x = 1.0 are less
important for two reasons. First, the S&B domain extends to infinity while ours extends to only X = 4. Hence,
for large x, our results become less accurate.11 Second, our code requires having a positive min (T). Hence, we
cannot initialize with T = 0 in the cold region. At the end of the run, at x = 1, our temperature has risen by
only a factor of 104, which precludes reaching much better than 0.1% accuracy there.

We were unable to use the S&B tables for a convergence study to verify our scheme’s convergence prop-
erties w.r.t. timestep Dt and mesh size h. We speculate that the reason is that the truncation is a mix of errors
due to finite Dt and h. Hence, a refinement study of one may be polluted by an overly coarse value for the
other. However, we can use Richardson extrapolation to prove that our scheme is correct to first order in time
and second order in space. Let vk denote a numerical solution to an equation discretized by a constant param-
eter k. For an initial value ODE, k represents the timestep; for a time independent equation, k is the mesh
width. If v is the analytic solution,
isprint in [21] erroneously has m1 = 10�4.
r each point, fk is the arithmetic average of the two adjoining cell-centered values.
en we compare results of two simulations at the cells adjoining x = 1.0 where one run uses X = 4 and for the other, X = 8, we find

ative differences: 8 · 10�6, 2 · 10�7 for Er, T, respectively. Since these differences are 3–4 orders of magnitude less than Table 1
at x = 1.0, increasing the domain beyond X = 4 would have little impact on the entries of Table 1.



Table 1
Linear MGD test. Relative errors times 1000

x e(T) · 103 e(Er) · 103 x e(T) · 103 e(Er) · 103

0.00 0.0016 0.3012 0.51 4.8468 0.2785
0.20 0.0015 0.3028 0.52 1.8220 0.0031
0.40 0.0005 0.3268 0.53 1.0528 0.1293
0.46 0.0081 0.3903 0.54 0.7320 0.2128
0.47 0.0174 0.4252 0.60 0.3316 0.5263
0.48 0.0467 0.4945 0.80 0.6099 1.3841
0.49 0.2205 0.6979 1.00 1.4253 2.2138
0.50 0.0019 0.3518

Numerical result obtained with Tf = 0.1, h = 1/400, Dt = 1/200.
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Fig. 1. Linear MGD test. Comparison of the linear solution (Tf = 1.0) with the solution of the nonlinear MGD system with Planckian
emission; t = 1.
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vk ¼ vþ aka þOðkbÞ;

where 0 < a < b, and where a is independent of k.

In the asymptotic regime, the ka term dominates the error, which allows ignoring the OðkbÞ term. Assuming
we have three solutions vk, v2k, v4k, a ratio of differences yields
v2k � v4k

vk � v2k
¼ 2a:
The order of convergence a is found by taking logarithms.
We apply this procedure to estimate the orders of convergence. First, for the Dt study, we fix h = 0.01 and

obtain three results using k = 0.5 · 10�8 s, 2k and 4k. For the Dx study, we fix Dt = 0.5 · 10�8 s and use
k = 0.0025. In both studies, runs are halted when t = t0. We compute a at 15 points across the domain
[0,1] for both Er and T and focus attention at x = 0.5, where the fields undergo the sharpest change. Results
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are presented in Fig. 2. The left plot clearly displays first order temporal convergence since a 	 1 across the
domain. The right plot supports our contention of second order spatial convergence. The low a 	 1.82
(1.89) values for Er (T) arise only at the two points x = 0.49, 0.51. We claim that at these points, we are
not yet in the asymptotic regime.

The results of Fig. 2 pertain to a solution obtained on a single level, i.e., without using AMR. We now ana-
lyze how AMR affects the order of spatial and temporal convergence. For each study, Dx and Dt, we make
three simulations (as before, we halt at t = 1.0) in order to apply our Richardson extrapolation technique.
In each study, the composite grid consists of a ‘‘base’’ level L0 mesh over the entire domain and two AMR
levels. Each level refines by a factor of two. Both L1 and L2 levels refine around x = 0.5. We examine conver-
gence at points x in all levels.

For the Dt study, all three runs use the same composite spatial mesh. We make three runs; each with fixed
timesteps Dt0, 2Dt0 and 4Dt0, where Dt0 = 1/400. The composite mesh uses Dx = 1/100 on level L0. The L1
mesh extends over 0.36 6 x 6 0.64, and the L2 mesh extends over 0.42 6 x 6 0.58. We obtain nearly the same
temporal order as for the level solve. Fig. 3 displays a for the 128 cells on 0 < x < 1. The lowest order, a 	 0.94,
occurs at x = 0.38 (0.62) for Er (T) near the L0 and L1 coarse–fine interface.

The Dx study requires more care. For each run, the L1 mesh extends over 0.25 6 x 6 0.75, and the L2 mesh
extends over 0.375 6 x 6 0.625. We refer to the three runs as R1, R2 and R4, where R1 and R4 use the ‘‘coars-
est’’ and ‘‘finest’’ composite grids, respectively. For the three runs, the level L0 mesh sizes are 1/40, 1/80 and
1/160, respectively. Because each AMR level refines by a factor of two, for R1, the L0, L1 and L2 mesh sizes
are also 1/40, 1/80 and 1/160. The R2 mesh widths are 1/80, 1/160, and 1/320; R4’s are 1/160, 1/320 and 1/640.
The composite grids are constructed so that within each level, the R1 cell boundaries are also cell boundaries
of runs R2 and R4. Hence, by arithmetic averaging adjoining cell-centered data, we obtain numerical results at
the same points for each run. These (averaged) values are used for Richardson extrapolation. Fig. 4 displays
the ratio (fR2 � fR1)/(fR4 � fR2) for the 79 faces on 0 < x < 1. The ratio is approximately 4 over most of the
domain, which indicates second order convergence. However at the coarse–fine interfaces, the order drops
significantly; especially for T at x = 0.25 and 0.375.
0 0.2 0.4 0.6 0.8 1
0.997

0.998

0.999

1

1.001

1.002

1.003

solid: E

dash:T 

x

Δt
 p

ow
er

Δt refinement

0 0.2 0.4 0.6 0.8 1
1.8

1.85

1.9

1.95

2

2.05

solid: E

dash: T

x

Δx
 p

ow
er

Δx refinement

Fig. 2. Timestep and meshsize orders of convergence; Dt (Dx) on left (right) sides; t = 1.0; see text.
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The loss of accuracy at the coarse–fine (C–F) interfaces is due to the discretization of the diffusion operator.
We use the infrastructure developed by Howell and Greenough [7] to assemble the linear systems. Unfortu-
nately, the difference stencils—which are not discussed in detail in [7]—have a shortcoming near the interface.
A more accurate discretization would yield an asymmetric matrix; for reasons of efficiency, symmetric linear
solvers were preferred.

The inaccuracy can be analyzed by considering a derivative such as uxx near the C–F interface. Assume that
level L0 lies to the left of L1. For i = 0, 1, 2, let xi denote the first three cell centers on L1 and let h define the L1
mesh size. Let xc denote the center of the coarse cell next to the C–F interface. On L1 interior points, e.g., on
x1, uxx is approximated by the difference: (u0 � 2u1 + u2)/h2. Hence, 1/h2 is the off-diagonal matrix coefficient
corresponding to u0 on the x1 row. For the matrix to remain symmetric, the u1 coefficient on the x0 row must
equal 1/h2. At x0, uxx is written as a difference of the right and left fluxes divided by the cell width h. The right
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flux is (u1 � u0)/h. The left flux is expressed as the difference (u0 � uc) divided by the distance between the cell
centers. If L1 refines by a factor of two, the distance x0 � xc = 3h/2. Thus, at x0, to maintain symmetry, uxx is
approximated by
u1 � u0

h
� u0 � uc

3h=2

� �
=h:
Unfortunately, the left flux is not centered on L1’s left-most face (at x = x0 � h/2). A Taylor expansion shows
that the difference is inconsistent; it equals ð5=4Þuxx þOðhÞ and this is the source of the error. However, the
error is localized. In a global sense, it is OðhÞ, when computed by integrating over the entire domain:R

uxx dV . This concludes the refinement study on an AMR mesh.
To summarize, in this section we have shown: (a) With a proper choice of Tf, the test problem mimics MGD

physics. (b) We obtain excellent agreement with the S&B tables. (c) Our scheme is correct to first order in time
and second order in space. (d) On an AMR mesh, the scheme incurs the same loss of accuracy as the one pre-
sented by Howell and Greenough [7] since we use the same discretization at coarse–fine interfaces.

5.2. Benefits of Wtc

We now present results that illustrate the benefits obtained by using Wtc. We show that for sufficiently large
Dt, the conventional (ADR) scheme of Axelrod et al. [2] i.e., where r = 1, fails to converge. Furthermore, if Dt

is only moderately large, so that the ADR scheme does converge, introducing Wtc accelerates convergence.
We begin by considering a variation of the problem introduced in Section 5.1. In this section, unless stated

otherwise, we use normalized variables. First, we replace the Wien distribution with the Planck function. After
normalizing, we obtain an equation similar to (34) except that e�m/T is replaced by (em/ T � 1)�1. Without stim-
ulated emission effects, the multifrequency system is ill posed since the RS of the temperature equation inte-
grates the coupling term over all m. (The integral of Bm/m

3 diverges.) Since this is only a test, we ignore this
complication. We use seven geometrically spaced groups, whose widths double with increasing frequency.
The leftmost group boundary is zero; the first group width m1 = 0.5; the last boundary m7 = 63.5. As in Section
5.1, the first group’s opacity is evaluated at m1/2 and the rest are evaluated at the square root average. The
spatial domain is 0 < x < 2. The initial conditions are as before, viz., T = 1 (0) for x < (>)0.5 and u is initially
zero. We impose symmetry boundary conditions on both left and right endpoints. Hence, at all times, the total
energy should equal the initial amount

R 1=2

0 RT dx ¼ 1=2.
Our test consists of several runs, each for only one timestep. All runs use h = 0.01. We run in fully-implicit

mode; hence, upon convergence, the temperature T and emission source Bm(T) are consistent. For infinitely
large Dt, a single time advance yields the steady-state with T = Tr, where the radiation energy Er ¼ aT 4

r . In
the non-dimensional system, since Bm is the Planck function, a = p4/15. Hence, the equilibrium temperature
is the solution to,
2ðT e þ aT 4
eÞ ¼ 1=2; i:e:; T e ¼ 0:2314:
The Wtc result, where Dt = 1000, is displayed in Fig. 5. The figure shows that the two fields are nearly in equi-
librium and almost spatially constant; Tr and T vary less than 1% and 2.4% respectively. The initially high T in
x < 0.5 has decayed more than fourfold. The radiation field, as it coupled in the initially hot region, diffused
outwards thereby heating the cold region.

The simulations were run with and without Wtc. Both runs consist of nested ‘‘inner’’ and ‘‘outer’’ loops.
The inner iterations (12) and (13) progress until the residual and the iterate difference iu(i+1/2) � u(i)i fall below
specified tolerances (which may not happen). At that point, the outer iteration computes a revised temperature
T using (6). We then reset T* = T and use it to recompute the B‘ and B0‘ coefficients. For the first outer iter-
ation, T* = T0. The iterations conclude when the temperature change and the nonlinear residual fall below
their specified tolerances.

The problem’s difficulty increases with Dt. Without Wtc, it becomes impossible to solve if Dt is very large
because of the computer’s finite precision. For large Dt, the time derivatives, e.g., (u � u0)/Dt, are dominated
by the other terms. Hence, the initial condition (u0,T0) becomes less relevant. Unfortunately, energy conser-
vation depends on ‘‘remembering’’ the initial condition. The boundary conditions enhance the difficulty. If the



0 0.5 1 1.5 2
0.229

0.23

0.231

0.232

0.233

0.234

0.235

0.236

0.237

Tm

Tr

normalized distance

no
rm

al
iz

ed
 te

m
pe

ra
tu

re
s

Ψtc robustness; Δt = 1000; h = 0.01

Tm

Tr

Fig. 5. Wtc robustness test; solution after one time advance; h = 0.01, Dt = 1000.

A.I. Shestakov, S.S.R. Offner / Journal of Computational Physics 227 (2008) 2154–2186 2175
initial condition is indeed ‘‘forgotten,’’ the solution is not unique. Any equilibrium temperature Te = T = Tr is
a steady-state.

For runs without Wtc, we impose r = 1 and determine for which magnitude Dt the iterations fail to con-
verge. Runs using Wtc proceed as follows. We first compute the three different r required to have (1) a
non-negative RS, (2) diagonal dominance, and (3) convergence of inner iterations. That is, the r must satisfy
the lemmas of Sections 3.1, 3.2, 3.3. The iterations commence using the largest r. The parameter r is fixed for
each outer iteration. Experience has shown that the lemmas give an overly large r. Hence, we use the lemmas
to set r for only the first outer iteration. Subsequent outer iterations decrease r as follows. Recall r = 1 + s
and that only when s = 0 do we solve the correct discretization of the equations. Successive outer iterations
multiply s by a constant factor, i.e., s! ass. The factor may be changed by the user. For small as, s decreases
quickly, but the resulting linear system is harder to solve. For the hardest test, where Dt = 1000 (see below), we
experimented and found better results with as = 0.5 than with as = 0.25.

Our tests begin with Dt = 20, a magnitude at which both modes, with and without Wtc, converge and give
nearly identical results. For this moderately large Dt, Wtc brings the benefit of faster convergence: 37 vs. 50
CPU sec, i.e., nearly 33% faster. For Dt = 100, the two modes still converge and give very similar results,
but they are now at the limit of convergence. The Wtc run is significantly faster: 56 vs. 205 sec, an almost four-
fold improvement. For Dt = 200, the non-Wtc run does not converge. However, its final iterate temperatures
still look physical; Tr is 0.5% uniformly higher than the corresponding converged Wtc profile. Our Wtc imple-
mentation has its own limit. The Fig. 5 result, where Dt = 1000, also fails to converge. Nonetheless, the result
is physical and conserves energy to nearly 11 decimal digits. Non-convergence is evidenced by small dips in the
matter temperature Tm at the cells abutting the left and right boundaries. At the end points, Tm changes very
slowly from one iteration to the next. The iterations effectively stall. Although the residuals continue to
decrease, they have such a slow decay that the run halts when it reaches the iteration limit. The run without
Wtc and Dt = 1000 diverges due to negative internal energies. To summarize, Wtc not only decreases the run-
time but also brings an extra degree of robustness.

5.3. Expansion of a hot aluminum sphere

In our opinion, the hardest aspect of code development is integrating a module into a multiphysics code and
running ‘‘real’’ problems. For us, this implies simulations of multiple materials, whose properties are listed in
tables, using hydrodynamics, heat conduction, radiation modules, and, naturally, AMR.
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For the final test we consider the following problem. An Aluminum (Al) sphere of radius 15.5 cm is sus-
pended in air. The initial densities are q = 2.68118198 and 0.00129 g/cm3 for Al and air, respectively. Both
materials are initially at T = 375.936 K.12 There is initially no radiation energy: Erjt=0 = 0. At t = 0, we inject
energy into the radiation field, but only into the domain containing Al. The energy is added over 0.1 ns, at
which point we have loaded a yield Y (erg) into the problem. Energy is added with a Planckian spectrum.
Unless stated otherwise, the simulations presented in this section use two AMR levels; h = 2, 4 cm, and a base
grid with h = 8 cm.

We compare simulations in which radiation transport is modeled by a single diffusion equation for the radi-
ation energy density (gray diffusion) to runs where the transport is modeled with multigroup diffusion (MGD).
We describe results where Y 	 11 kT and Y 	 1 MT.13

The problem simulates a strong explosion in air; the parameter choice corresponds to a nuclear source. The
effects are well-known: Zel’dovich and Raizer [25] Ch. IX, Brode [5]. Initially, radiation dominates the dynam-
ics: a fast thermal wave propagates through the surrounding air. When the wave slows to sonic speeds (of the
hot air), the steep pressure gradient gives rise to a strong shock. Finally, hydrodynamics dominates. Salient
effects are similar to the simulation of a point explosion using hydrodynamics and nonlinear heat conduction
([20], ‘‘Non-Self-Similar-Problem’’ section).

Before presenting our results, we summarize them. For the lower yield, gray and MGD simulations are very
similar. However, for Y = 1 MT, the gray and MGD simulations differ significantly and this, we feel, is a new
result. Although it contradicts established theory (Brode [5]) we believe it to be correct since it is explained by
examining spectra of the radiation field (see below). Furthermore, our MGD result is corroborated by the
trusted computer code LASNEX [26].

Figs. 6–8 display densities, temperatures and velocities, respectively. Each figure contains three curves. Two
are from gray and MGD simulations with Y = 11 kT. The third curve is from a simulation using gray diffusion
and a yield Y = 1 MT. The 1 MT curves are drawn after implementing Sachs scaling, i.e., by scaling time and
radii by the cube root of the yield ratio RY = (Y1/Y2)1/3, where Y1 = 11 and Y2 = 1000. Hence, while the
Y = 11 results are taken at t = 1 ms, the 1 MT results are at t = 4.48 ms and the 1 MT radii have been divided
by RY. Fig. 6 displays log10(q/q0), where q0 = 0.00129 g/cm3 is the ambient air density. Although the close
agreement displayed in Figs. 6–8 may not surprise, it is indeed remarkable how well the gray scaled 1 MT
curves compare with the lower yield results. The similarity of the Y = 11 kT gray and MGD curves indicates
that gray diffusion is adequate for small Y.

The results in Figs. 6–8 are characteristic of an event transitioning from a radiation dominated regime to
one dominated by hydrodynamics. Figs 6 and 7 depict a strong shock at r = 31 m separating from a fireball of
radius 26-27 m.

In order to validate our gray Y = 1 MT simulation, we continue the run to t = 7 ms and find good quali-
tative agreement when we compare with Brode [5]. Quantitatively, at t = 7 ms, we find a strong shock at
r = 164 m, whereas Brode finds it at r 	 190 m. Both simulations show a nearly tenfold density rise at the
shock, while inside the fireball, q 	 5 · 10�5 cm3. For the central (r = 0) temperature we have
T = 2.04 · 105 K at t = 7 ms vs. 	2 · 105 K for Brode. Our fireball radius is 138 m (	160 for Brode), and
our shock temperature is 1.65 · 104K (	1.6 � 1.7 · 104 for Brode).

We now compare the gray and MGD results for Y = 11 kT yield at the earlier time, t = 1 ls, when the solu-
tion is dominated by radiation. At this time, since the thermal wave is supersonic, it suffices to only examine
the temperatures T and Tr, where, for both gray and MGD simulations, Tr „ (Er/a)1/4 and a is the radiation
constant. (Although the Al ball has ballooned to nearly 1 m, which launches a strong shock at the Al/air inter-
face, there is little separation between the interface and the shock. Thus, beyond 1 m, the air density is nearly
the same as it was initially.) Fig. 9, which displays the temperatures, shows little difference between gray and
MGD. Both models display a fireball extending to r = 8.1–8.4 m and a central T 	 2.5 · 106 K; both also dis-
play the start of the shock at the Al/air interface, as evidenced by the spike at r 	 0.8 m.
12 Inputs are tailored so that our EOS returns equal pressures for both materials, approximately 1 bar.
13 Using the conversion 4.18 · 1019 erg/kT, the actual yields are 10.9731 kT, 0.9870682 MT, 10.9665 kT, and 0.9862604 MT for the two

gray and two MGD runs, respectively.
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However, for high yield, the gray and MGD simulations differ dramatically. Fig. 10 displays T and Tr for
Y = 1 MT at t = 1 ls.14 We see that for gray diffusion, T = Tr; just as for Y = 11 kT. The gray diffusion ther-
mal wave, which is still supersonic, has a front at r 	 30 m. However, the MGD result is strikingly different.
Multigroup diffusion lowers the central temperatures by more than 10%. More surprisingly, for MGD, T and
14 The spatial scale of Fig. 10 cannot resolve the small, but nevertheless significant hydrodynamic effects which expand the Al sphere to
r 	 80 cm. For MGD, the temperature is not monotone w.r.t. to r near the origin. It falls from a central value of 2.6 · 106 deg to 1.8 · 106

at the edge of the sphere (due to the rarefying Al) then rises to 2.06 · 106 in the air.
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Tr are tightly coupled only out to r 	 20 m. Beyond that, at T 	 8.5 · 105 K, T and Tr decouple. The radiation
temperature extends to r 	 300 m, which is the free-streaming limit.

To examine why the high yield gray and MGD simulations differ, we turn off hydrodynamics and heat con-
duction, repeat the simulation, and find temperatures similar to Fig. 10. This is not surprising since the dynam-
ics are radiation-dominated. To gain more insight, we examine spectra. Fig. 11 displays the spectral radiation
energy vs. frequency at 5–160 m. Evidently, the frequency-dependent air opacity is responsible. High fre-
quency (30–200 keV) photons travel largely unimpeded whereas near the origin, the spectrum develops a hole
at 10 keV. Moving away from the center, the hole progresses to lower frequencies so that at 100–200 m, the
spectrum consists of two peaks, one at the high frequencies, another near the visible range. Since the latter
contains little energy, the protruding radiation ‘‘tongue’’ of Fig. 10 is due to the high frequencies.
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We believe that the difference between the Y = 11 kT and Y = 1 MT MGD simulations is due to the factor
of 100 between the yields. Because the energy is added with a Planckian spectrum, the initial maximum tem-
peratures differ by roughly the fourth root, or approximately 3. The initial temperatures are of order 3–5 keV
and the high frequencies have a nearly Wien distribution, m3e�m/T. Hence, we expect the Y = 11 kT spectrum to
be e�m/T/e�m/3T or e�2m/3T times smaller than the high yield case. Substituting T = 3 and m = 100 keV gives a
very small number. The conclusion is that the Y = 11 kT case has an insignificant number of those energetic
photons that are not absorbed by air.

We conclude the section by comparing results of the 1D spherical and 3D Cartesian versions of our code.
We return to running with full functionality, i.e., with hydrodynamics, heat conduction, as well as with two
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AMR levels. For the Cartesian simulation, the Al ‘‘sphere’’ is a cube 31 cm per side (in contrast to the 1D,
31 cm diameter ball.) The difference in volumes implies that the initial central, Cartesian temperatures are nec-
essarily smaller in order to have the same yield. Fig. 12 displays the radial 1D results and a x axis lineout of the
Cartesian run. The agreement of the profiles is self-evident.

To summarize, we have simulated real-life problems, viz., air bursts with yields Y = 11 kT and 1 MT. We
have shown that for low Y, gray and MGD give similar results. However, for large Y, they differ for early
times when the dynamics are dominated by radiation. Our high yield MGD simulation contradicts results
of Brode [5]. However, Brode’s pioneering simulations were done many years ago when the relatively limited
computational resources precluded using sophisticated modules such as MGD.

6. Conclusion/summary

We have described a numerical scheme to solve the radiation multigroup diffusion equations. The scheme is
implemented in a radiation-hydrodynamic code with the patch-based AMR methodology, originally proposed
by Berger and Oliger [3] for hyperbolic partial differential equations. Our scheme consists of two parts. The
first, described in Sections 2 and 3, is applied on a level of the AMR grid layout and may be adapted to
any code. This part consists of adding Wtc to the ‘‘fully-implicit’’ iterative scheme of Axelrod et al. [2]. Wtc
brings an extra degree of robustness and enhances convergence of the Axelrod scheme. We have developed
lemmas that determine the minimum magnitude for the Wtc parameter s to ensure that the iterations converge
and the result is physically meaningful. The appropriate magnitude depends on the problem.

Our implementation of Wtc is not optimal—at least for our AMR code architecture. In our code, for each
AMR level, we compute a single scalar parameter s. However, the levels consist of a collection of grids (rect-
angles in 2D) that need not be connected. If the grids are not connected, they form independent problems.
Hence, it would be more efficient to use different s for disconnected grids.

The second part of our scheme, the sync-solve (SS), addresses a specific need of our code, viz., the require-
ment of having an energy-conserving result on the composite grid of multiple AMR levels. For the multigroup
equations, this part reduces to a coupled system of elliptic equations on the unstructured grid combining all
levels. Since the SS is intended to be a small correction to the result of the level solves, we adapted the key
element of the ‘‘partial temperature’’ scheme of Lund and Wilson [10]. This allowed reducing the multigroup
SS to a collection of scalar SS’s. We were then able to reuse existing software.
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This paper included simulations of three problems. The first two are idealized tests of only the multi-
group module. The third is a ‘‘real’’ problem, which uses the full capability of the code: AMR, multiple
materials, etc. The first problem was chosen because of its non-triviality and the availability of analytic
results with which to compare. We obtained excellent agreement and verified the convergence properties
of the scheme. The second problem illustrated the benefits brought by Wtc. We compared the conventional
scheme of Axelrod et al. [2] with our Wtc-modified version. For hard problems, Wtc either decreased run
times or ensured convergence in regimes where the conventional scheme diverged. The third problem
showed that our multigroup module has been fully integrated into the code and has already extended
the scientific frontier. For a high yield air burst at STP, we found that gray diffusion gives an incorrect
result during the radiation-dominated regime because gray fails to capture the frequency-dependent effects
of the air opacity.
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Appendix A. Revised S&B table
x
 T
 Er
 �(T)
 �(Er)
0.0000000E+00
 9.9373253E�01
 5.6401674E�03
 5.4E�09
 5.9E�11

2.0000000E�01
 9.9339523E�01
 5.5646351E�03
 1.8E�08
 7.0E�11

4.0000000E�01
 9.8969664E�01
 5.1047352E�03
 6.0E�09
 6.2E�11

4.6000000E�01
 9.8060848E�01
 4.5542134E�03
 9.8E�09
 6.4E�11

4.7000000E�01
 9.7609654E�01
 4.3744933E�03
 1.3E�08
 6.9E�11

4.8000000E�01
 9.6819424E�01
 4.1294850E�03
 8.2E�09
 6.3E�11

4.9000000E�01
 9.5044751E�01
 3.7570008E�03
 6.7E�09
 6.3E�11

5.0000000E�01
 4.9704000E�01
 2.9096931E�03
 7.7E�09
 2.8E�11

5.1000000E�01
 4.3632445E�02
 2.0623647E�03
 1.2E�08
 6.3E�11

5.2000000E�01
 2.5885608E�02
 1.6898183E�03
 1.3E�08
 6.3E�11

5.3000000E�01
 1.7983134E�02
 1.4447063E�03
 1.8E�08
 7.0E�11

5.4000000E�01
 1.3470947E�02
 1.2648409E�03
 1.5E�08
 6.5E�11

6.0000000E�01
 4.3797848E�03
 7.1255738E�04
 1.1E�08
 6.4E�11

8.0000000E�01
 6.4654865E�04
 2.3412650E�04
 2.3E�08
 6.8E�11

1.0000000E+00
 1.9181546E�04
 1.0934921E�04
 1.0E�08
 6.1E�11
Revised S&B table [4]; time t = 1.0, Tf = 0.1. Columns 4 and 5 give maximum, absolute error estimates. Hence, at x = 0, entry T is correct
to ±5.4E�09, i.e., has 8 trustworthy digits.
Appendix B. Diagonal dominance; large mean free paths

As noted in the footnote of Section 3.2 (and remarked by a referee), long mean free paths may lead to dif-
fusion coefficients that overwhelm the other matrix terms. Thus, the estimate for r, obtained in Lemma 2, may
be insufficient. The matrix diagonal contains three terms of various magnitudes. The first stems from the dis-
cretization of the o/ot derivative. Because we multiply by Dt, the term equals 1. The second term is due to the
coupling coefficient ag; the term equals Dtc/lg, where lg = (qjg)�1 is the mean free path. The third term is the
diffusion coefficient, which after including the time step and discretization of o2/ox2, is of the form Dtcl0g=3h2,
where l0g is the flux limiter-modified mean free path;
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l0g ¼ 1=½ðlgÞ�1 þ ð3hÞ�1ðbþ jDugj=ugÞ�;
where b is a small, user-set constant, whose utility will become evident and Dug/ug is a normalized difference of
adjoining cell-centered values.

In the limit lg!1, the coupling term ag is negligible. Hence, we compare the diffusion term with unity. As
lg!1, l0g no longer depends on lg. After factoring a factor of h, the diffusion term is of magnitude,
ðDtc=hÞ=ðbþ jDugj=ugÞ:

The quantity b�1 plays the role of the maximum number of mean free paths allowed, in units of h. If the gra-
dient of ug is not negligible, jDugj/ug dominates the diffusion term. If both lg� 1 and jDugj/ug� 1, b domi-
nates. In that case, we are left comparing 1 to Dtc/hb. The parameter b is small; we often use 10�4.
(However, as shown in Appendix C, 10�4 is too large.) Using c = 3 · 1010 cm/s gives a diffusion term of order
3 � 1014Dt=h: ð39Þ

If this exceeds machine precision, the r estimate of Lemma 2 does not guarantee diagonal dominance. We are
now left with problem-specific estimates. Clearly, simulations requiring small h or large Dt are problematic.
Luckily, our envisioned applications yield reasonable Dt/h ratios.

Consider two topics, ICF hohlraums and simulations of the type described in Section 5.3. For the former,
mesh sizes are rarely less than 0.1 lm, i.e., minðhÞ ¼ Oð10�5Þ cm. Luckily, in ICF, typical total simulations
times are of order of tens of ns, requiring significantly smaller timesteps. Using max ðDtÞ ¼ Oð10�9Þ s, makes
(39) of order 1010, which, when compared to unity, is six orders of magnitude above double precision.

For applications of the type presented in Section 5.3, while timesteps vary enormously, so do mesh sizes;
hence, the ratio Dt/h remains moderate. For long-time simulations requiring Dt exceeding 1 s, it is unlikely
that it is necessary to resolve details less than 100 cm. Substituting these values into (39) leaves 3 · 1012, which,
is also resolved by double precision, but just barely.

Appendix C. Full physics convergence analysis

This section presents a spatial convergence analysis of the scheme as it may be used in practice. Particular
attention is devoted to effects of the flux limiter and AMR. In contrast to what was analyzed at the end of
Section 5.1, here we refine about a moving front.

The exactness of the solution depends upon the magnitudes of Dt and Dx. To ensure that the time step does
not dominate the error, we use a very conservative value for Dt, which is much smaller than what would be
used in practice. When Dt is small, Wtc is not needed. Furthermore, we find that solutions using the FI and SI
schemes are indistinguishable for our chosen Dt. We obtain the same result by solving nonlinear problems for
each time step (FI) as by linearizing the equations and solving linear systems (SI). In order to save computer
time, the simulations in this section use the SI scheme and do not use Wtc.

To address concerns of a referee, we consider a stringent test and focus attention on the problem described
in Section 5.3. An Al sphere of 15.5 cm radius is suspended in air. Initially, both sphere and air are at STP; the
radiation field is initially zero. We load a Y = 1 MT source (approximately 4 · 1022 erg) into the radiation field
only in the region containing Al. The source is loaded into a Planckian spectrum over a time interval
ts = 0.1 ns. The interval is so short that over its duration the main effects are to raise the radiation field to
a high temperature and to a lesser extent also increase the matter temperature due to coupling. At t = ts, most
of the energy is in the radiation field inside the sphere. The radiation temperature Tr is largely uniform over the
sphere and equals approximately 1.3 · 108 deg, or nearly 12 keV.

To highlight effects of the flux limiter, we examine the solution at t = 10�7 s. In order to analyze errors due
to only our multigroup scheme, we turn off all other physics, e.g., hydrodynamics. This yields profiles that are
similar to those obtained with a ‘‘full physics’’ simulation since at t = 10�7 s hydro effects should be negligible.
(Assuming maximum sound/shock speeds of Oð107Þ cm/s, the most that hydrodynamics can do is push the Al/
air interface out a few cm while the hot sphere can radiate out to 3000 cm.)

We examine the total radiation energy density; Fig. 13 displays Er for r > 40 cm. Inside the Al, Er is much
larger than what is shown in Fig. 13; it decays steeply from a central value of 2.6 · 1014 erg/cc, to 1.5 · 1012 at
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r = 16, which designates the air cell adjoining the sphere. Hence, the radiation temperature decays from a cen-
tral value of Tr = 14 · 106 to 3.8 · 106 deg. The change in slope at 1400 cm is explained by examining the tem-
peratures Tr and T; see Fig. 14. The distance r = 1400 marks the approximate extent of the fireball. However,
radiation propagates out to r = 3000 cm, then drops sharply; the drop due to the flux limiter.

We identify three distinct regions in the profiles of Figs. 13 and 14. The innermost, out to r = 1400 denotes
where we can expect the diffusion equations to yield an accurate representation of the physics. There, the
domain is largely optically thick, as evidenced by the close agreement of T and Tr. The region
1400 < r < 2900 denotes an optically thin region, where the diffusion approximation is expected to fail. Lastly,
in the region r > 2900 the solution depends entirely on a kludge: the flux limiter. However, although at this
time the limiter is dominant only near r = 3000, it has affected the entire solution because the propagation
of the front is governed by the limiter and hence all cells out to the present position of the front have been
traversed by the leading edge of the wave.

For the purposes of the convergence study, we define the results displayed in Figs. 13 and 14 as the ‘‘con-
verged’’ solution. We obtain it using a uniform grid Dx = 0.5 cm and an initial Dt = 10�16 s. The timestep
increases by 5% each cycle but is not allowed to exceed 2 · 10�12 s. We take 50,183 steps to reach the final
time. The discretization yields a light-speed Courant number Cc „ cDt/Dx = 0.12. Although the value may
seem overly cautious, it is still too large. A transport calculation would preclude any signal from propagating
beyond r = 3016 cm. However, our finest-grid diffusion result yields Tr = 1.8 · 106 and 12,000 deg at r = 3016
and 3116 cm, respectively. Although the enhanced diffusion of our result may be due to our choice of a limiter,
and as analyzed by Morel [13] and Olson et al. [14] there are other limiter choices, all limiters reduce to dis-
cretizing the equation ut = cux.

We time-lag the limiter for two reasons. (1) Flux limiting is a kludge. Thus, a time-advanced limiter is not
only more complicated to implement but it does not yield a more accurate solution. (2) When a front prop-
agates into cold material, a time-lagged limiter puts a front slightly behind where a time-advanced limiter
would place it.15 So, since the raison d’etre of a limiter is to retard the flow, we time-lag.
15 The result may be seen by comparing two face-centered, flux limited diffusion coefficients of the form u/joxuj and discretized as
(h/2)(u0 + u1)/ju0 � u1j. Assume the front propagates into cell 0. Let the time-lagged u0 = 0 and the time advanced values be u00 and u01 with
u00 � u01. After dividing by h/2, the time-lagged and time-advanced coefficients equal 1 and (1 + e)/(1 � e), respectively, where e ¼ u00=u01.
Thus, the time-lagged diffusion is smaller and the front does not propagate as far.
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Before describing the convergence study, we take up two topics. The first is a truncation error analysis of a
diffusion equation with a time-lagged flux limiter. If the limiter is dominant, the face-centered diffusion coef-
ficient is Di+1/2 = [(ui+1 + ui)/2]/[jui+1 � uij/Dx], where i denotes the cell index. After inserting this expression
into the equation discretized with backward Euler we obtain,
u0i � ui ¼ ðCc=2Þ½Giþ1=2ðuiþ1 þ uiÞ � Gi�1=2ðui þ ui�1Þ�; ð40Þ
where Giþ1=2 ¼ ðu0iþ1 � u0iÞ=juiþ1 � uij and primes denote the time-advanced variable. We ignore the absolute
value operator since it only serves to enforce flow down the gradient. Since G is of the form f(t + Dt)/f(t),
Gi±1/2 = 1 + Dt F, where F has units of inverse time and its leading term is f 0(t)/f(t). Expanding the LS of
(40) about the time-retarded value yields, DtotuþOðDtÞ2, while inserting the expansions of Gi±1/2 reduces
the RS of (40) to
ðCc=2Þ½ðuiþ1 � ui�1Þ þ DtU t�:

The term Ut is of the form (otf/f)Dxoxu and has units of u/t. The difference (ui+1 � ui�1) yields
2DxoxuþOðDx3Þ. After simplifying, we obtain the truncation error of (40),
otuþOðDtÞ ¼ coxuþOðDx2Þ þ CcU t=2:
The Cc term is important. It shows that even when both Dt and Dx are small, the discretization has an addi-
tional error proportional to the light-speed Courant number.

The second topic is related to the parameter b introduced at the end of Section 2. Appendix B shows that
for large mean free paths the diffusion coefficient may depend solely on the sum b/Dx + j$uj/u. Consider
Fig. 13 and the domain 1500 < r < 2500. From values at r = 1500, 2000, 3000, we estimate the average of
j$Erj/Er to be 3.7 · 10�4. Thus, if a particular b is deemed sufficiently small for some coarse mesh width,
as the mesh is refined, the ratio b/Dx may overwhelm the flux limiter. The statement has implications for both
a conventional uniform-grid convergence study as well as one with AMR, since we use the same b on all levels.
Unless stated otherwise, for all runs discussed in this section b/Dx = 10�6.

We now describe the single-level convergence study. We make five runs with successively finer grids,
Dx = 8, 4, 2, 1, and for the ‘‘converged’’ result, Dx = 0.5 cm. All runs have the same initial Dt time history.
However, max(Dt) depends on the size of Dx in order to maintain max(Cc) at 0.12. Hence, max(Dt) varies from
3.2 · 10�11 to 2 · 10�12 between the coarsest and finest runs.
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Our code computes cell-averaged quantities, e.g., Er (erg/cc). On the coarsest grid, we obtain 500 values on
cells centered at 4,12,20 , . . ., cm. In order to have an equitable comparison, for each run, we also determine
500 average values by post-processing. In order to conserve energy, we use volume averaging.

The error is computed as follows. Let Ei,Dx denote the averaged energy density in the ith coarse cell for a
run with mesh size Dx. By defining the relative error,
eDx ¼
X500

i¼1

ðEi;Dx � Ei;0:5Þ2
" #1=2, X500

i¼1

ðEi;0:5Þ2
" #1=2

; ð41Þ
we obtain
½e8; e4; e2; e1� ¼ ½0:4820; 0:2436; 0:06969; 0:03475�:

The ratio of successive errors,
½ðe8=e4Þ; ðe4=e2Þ; ðe2=e1Þ� ¼ ½1:98; 3:50; 2:01�:

Since the ratios are approximately two, our results suggest first (rather than second) order convergence.

Lastly, we compare results of a run using AMR with an ‘‘equivalent’’ run that uses a uniform grid. For the
AMR run, we use a base L0 grid with Dx = 8 cm. We use two refinement levels, each refines by a factor of two.
The run begins with Dt = 10�16, and we increase Dt as before until reaching max(Dt) = 3.2 · 10�11. Because we
refine in both space and time, Cc = 0.12 on all levels. The parameter b = 8 · 10�6; hence, b/Dx varies from
10�6 to 4 · 10�6 between the coarsest and finest levels. The refined levels adapt to the Al/air interface
(at r = 15.5 cm) and around the position of max[j$(Er)j/Er]. At the end of the run, the grid layout is:
0 < x < 96 and 2944 < x < 3392 for the L1 level (Dx = 4) while: 0 < x < 48 and 2976 < x < 3360 for L2
(Dx = 2). We compare errors of the AMR run as above, by forming cell averages of the 500 cells centered
at 4,12,20 , . . ., cm. The error on the AMR run is
eAMR ¼ 0:06963:
Since for the AMR run, the finest level Dx = 2 cm, we compare eAMR with the error of a uniform-grid run
where Dx = 2 cm, i.e., with e2 = 0.06969. To three significant digits, the errors are essentially equal. The uni-
form-grid run uses 2000 cells, while at the end of the simulation, the AMR run has 676 cells.

To summarize, we find that when the solution depends on the flux limiter, spatial convergence reduces to
first, instead of second order. The effect reminds us of what happens to hydrodynamic schemes in the presence
of shocks: in smooth parts of the flow, the solution may be second order convergent, but in regions traversed
by shocks, the scheme reverts to first order. In closing, we note an additional source of error, which we did not
quantify. The simulations of this section use real materials whose properties (internal energies, opacities, etc.)
are given by tables. Table lookups have errors that depend on the schemes used to interpolate between table
data.
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